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Abstract— It has been demonstrated that, in a network of 

excitatory and inhibitory neurons, a synchronous response 
gradually emerges due to spike timing dependant plasticity 
acting upon an external spatio-temporal stimulus that is 
repeatedly applied. This paper builds on these findings by 
addressing two questions relating to STDP and network 
dynamics. Firstly, how does the choice of neuron model 
affect the learning of oscillation through STDP? Our ex-
periments suggest that the earlier results hinge on the selec-
tion of a simple, biologically less realistic neuron model. 
Secondly, how do neural oscillators that have learned to 
oscillate only in response to a particular stimulus behave 
when connected to other such neural oscillators? We inves-
tigate this question by emulating the results of a classic 
experiment by Kuramoto. 

Introduction  
 Spike Timing Dependent Plasticity (STDP) is a refine-
ment of the Hebbian learning principle for spiking neural 
networks, and has been reported in many experimental 
studies [1]. STDP has further been studied in relation to 
oscillations. Hosaka et al [2] demonstrate oscillatory 
dynamics in a network of excitatory and inhibitory neu-
rons that has been trained using STDP with an external 
spatio-temporal stimulus that was repeatedly applied. 
They found that a synchronous response gradually 
emerges, and the synchrony becomes sharp as learning 
proceeds. The authors state that the generation of syn-
chrony itself does not depend on the length of the cycle 
of external input, however they found that synchrony 
emerges once per cycle of the length of the external 
stimulus trained upon. 

This paper addresses two issues relating to STDP and 
network dynamics. Firstly, how does the choice of neu-
ron model affect the learning of oscillation through 
STDP? Secondly, how do neural oscillators that have 
learned to only oscillate in response to a particular stimu-
lus behave when connected to other neural oscillators? 

Methods 

A: Quadratic intergrate-and-fire neurons 
The Quadratic Integrate and Fire (QIF) model [3] dis-

plays Type I neuron dynamics [4] with a saddle node 
bifurcation. The time evolution of the neuron membrane 
potential is given by: 

( )( )
C

I
+VVVV=

dt

dV
tr −−

τ
1     

where V is the membrane potential, with Vr and Vt be-
ing the resting and threshold values respectively. C is the 
capacitance of the cell membrane. τ is the membrane 
time constant such that τ = RC with R being the resis-
tance. I represents a depolarizing input current to the 
neuron.  

B: Izhikevich neurons 
The Izhikevich (IZ) neuron model [5] is a two variable 

system that can model both Type I and Type II neurons 
depending upon how it is parameterized. The time evolu-
tion of the model is defined as follows: 
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I is the input to the neuron. V and U are the voltage 
and recovery variable respectively, and a, b, c and d are 
dimensionless parameters. The chosen parameter values 
dictate that the Izhikevich neurons used in this paper are 
Type II neurons with a saddle node bifurcation. 

C: Hodgkin-Huxley neurons 
The Hodgkin-Huxley (HH) model [6] is a Type II neu-

ron with an Andronov-Hopf bifurcation. Hodgkin and 
Huxley found three different types of ion current: sodium 
(Na+), potassium (K+), and a leak current that consists 
mainly of chloride (Cl-) ions. From their experiments, 
Hodgkin and Huxley formulated the following equation 
defining the time evolution of the model: 
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C is the capacitance and n, m and h describe the vol-
tage dependence opening and closing dynamics of the 
ion channels. The standard parameterisation and rate 
functions for each chemical and channel are used and can 
be found in Hodgkin and Huxley’s book [6]. 

D: Synaptic model 
 A conductance synaptic model is used for experi-

ments using the QIF and IZ models model, whereas the 
HH model uses synaptic reversal potentials to further 
scale incoming spikes. The latter model is as follows: 
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Fig. 1.  Raster plot of neuron firings from the excitatory layer of a 
QIF PING node that has learnt to oscillate at 30 Hz. 

 



where Ij(t) is the input to neuron j at time t, ti is the 
spike from neuron i arriving at time t, and wij is the 
weight of the synapse connecting the two neurons. Rev is 
the reversal potential and Vj is the voltage of the target 
neuron.  

E: Spike timing dependent plasticity 
The STDP update method used in this paper is an 

'additive nearest neighbour' scheme. A pre-synaptic spike 
followed by a post-synaptic spike potentiates the synap-
tic weight, where as a post-synaptic spike followed by a 
pre-synaptic spike depresses the weight. The change in 
weight (∆w) is affected by the exponential of the time 
difference (∆t) and the learning rate constant (λ): 
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For potentiation, the learning rate value λ is 0.3, and 
the window τ is 20 ms. For depression, the learning rate 
value λ is 0.3105 and the window τ is 10 ms. 

F: Evolution of oscillatory nodes 
The neural architecture for generating oscillations 

used in this paper is pyramidal inter-neuronal gamma 
(PING), and can give rise to both faster gamma oscilla-
tions, as well as slower oscillations such as theta in the 
cortex and the hippocampus [7].  

Whilst the general PING architecture is well under-
stood, the specific details required for both particular 
oscillatory frequencies and neuron model varies and 
involves a large space of parameter values within the 
general PING framework. In order to obtain these values 
we used a genetic algorithm. In the present work, all 
neural populations used an excitatory layer of 200 neu-
rons and an inhibitory layer of 50 neurons. The excita-
tory layer drives the entire network and so is the only one 
to receive external input. The networks were wired up 
with connections between excitatory neurons, between 
inhibitory neurons, from excitatory to inhibitory neurons, 
and from inhibitory to excitatory neurons. 

The parameters that were evolved were the length in 
milliseconds of the external stimulus presentation, the 
synaptic weights and delays, as well as the number of 
synaptic connections between source and target neurons 
in each pathway. The amount of time trained for was also 
an evolved parameter for networks that learnt. Two types 
of PING architecture networks were investigated. The 
first learnt a stimulus and then after learning would only 
oscillate to the learnt stimulus. The second did not use 
learning and so would oscillate to any input stimuli.  

G: Synchronisation metric  
  The Kuramoto inspired critical coupling experiment 
simulations in this work consisted of 64 neural PING 
oscillators connected together. We only calculated syn-
chrony amongst the excitatory neuron layers. The spikes 
of each neuron in each excitatory layer were binned over 
time, and then a Gaussian smoothing filter was passed 
over the binned data to produce a continuous time vary-
ing signal. Following this, we performed a Hilbert trans-
form on the mean-centred filtered signal in order to iden-
tify its phase. The synchrony at time t was then calcu-
lated as follows: 
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where θj(t) is the phase at time t of oscillatory population 
j.  i is the square root of -1. N is the number of oscilla-
tors, and tmax is the length of time of the simulation.  

Results 

A: Neuron model and the learning of oscillation 
Our first investigation explored how the neuron model 

affects the ability of a cluster of neurons to learn to oscil-
late. In order to explore this we evolved neural learning 
PING oscillators to oscillate at 30 Hz for QIF, IZ and 
HH neuron models. Figure 1 shows a raster plot of the 
firings of the excitatory layer from the evolved QIF solu-
tion when it has been presented with a learnt stimulus 
after training. In accord with the finding of Hosaka et al 
[2], the network fires regularly at the stimulus presenta-
tion, and has narrow and pronounced periodic bands. 
These thin bands appear approximately every 33 milli-
seconds giving the 30 Hz oscillation desired. 

Figure 2 shows how the networks respond to between 
0% to 100% noise in the stimulus averaged over 10 runs. 
The aim of this study is to ascertain if the network only 
responds by oscillating to the learnt stimulus and no 
other. The QIF network performs the best, showing a 
gradual decline in the amplitude of the frequency re-
sponse until it reaches a minimal response at 40% noise. 
Less than 0.5 amplitude implies that only a few neurons 
are firing hence no response is really being produced, 
hence it is highly selective to only its learnt stimulus. 
The IZ model performs almost as well. The HH model 
performs poorest with a less pronounced frequency am-
plitude decline as noise rises, and also a less stable re-

 
Fig. 2.  Amplitude of desired 30 Hz frequency response for QIF, 
IZ and HH models with 0%-100% noise added to stimulus. 

 
Fig. 3.  Frequency response for QIF, IZ and HH models after 
learning with varying stimulus lengths. 

 



sponse throughout. The less stable response is due to a 
high variance in the amplitude over the 10 sample runs, 
and is indicative of the fact that the network is inherently 
more volatile. 

Figure 3 shows the effect of changing the length in 
milliseconds of the stimulus trained upon (averaged over 
10 runs). All learning stages for all stimulus lengths t had 
the same learning time. We located the frequency with 
the highest amplitude only. From the figure we can see 
that none of the models respond significantly to stimuli 
less than 10 ms long. Beyond this, the figure shows that 
for both QIF and IZ models, the length of the stimulus is 
roughly proportional to the frequency (f), with f=1000/t. 
This cannot be said of the HH model, which is unable to 
use the same network architecture to learn to oscillate at 
different frequencies, given only a change in the stimulus 
length. Having found a dependency on stimulus length, 
we removed the inhibitory layer from the networks and 
found it made no difference to the performance of QIF, 
IZ and HH models. We conclude that, regular repetition 
of a stimulus to a network that has been trained using 
STDP will cause oscillation at the frequency of presenta-
tion. For the HH model this further means that whilst 
stimulus length is important in achieving the result, the 
tuning of other variables is necessary to achieve the de-
sired oscillation. 

The fact that oscillatory frequency is dependent upon 
the length of the presentation can be elucidated by the 
work of Masquelier et al [8]. They report that, ‘Each 
time the neuron discharges in the pattern, it [STDP] 
reinforces the connections with the presynaptic neurons 
that fired slightly before in the pattern. As a result next 
time the pattern is presented the neuron is not only more 
likely to discharge to it, but it will also tend to discharge 
earlier’ [8]. The fact that neurons learn to always re-
spond to a particular stimulus implies that the regular 
repetition of a stimulus to a recurrent network would 
cause the network to fire regularly at the stimulus presen-
tation, and that this firing would become earlier and 
sharper, in the sense of producing narrower and more 
pronounced periodic bands, as learning proceeds. Hence, 
the resulting synchrony. 

It follows from this that after an appropriate period of 
learning the frequency of the oscillation can be adjusted 
by simply altering the length of the stimulus, as it is only 
the beginning of the stimulus that is required to induce 
firing. To test this hypothesis we generated a stimulus of 
100 ms, trained the network on it repeatedly until a satis-
factory amplitude response was attained. We then tested 
the network only using the first t milliseconds repeatedly. 

We did this for every value of t between 13 and 100 ms. 
As can be seen by the results for the IZ model shown in 
figure 4, the hypothesis is correct. Hosaka et al [2] state 
that in a network of excitatory and inhibitory neurons, 
STDP transforms a spatiotemporal pattern to temporal 
information. However, from the evidence above we con-
clude that the resultant temporality is not due to the net-
work dynamics that result from the PING architecture, 
but is an artifact of repeated periodic presentation of a 
learnt stimulus. The network will respond “synchro-
nously” whenever the stimulus is presented. 

B: Critical coupling experiment 
Our next investigation explored the critical coupling 

experiment [9] in which synchrony increases smoothly 
but rapidly as connection strength increases in a unifor-
mally connected network of oscillators. We compare the 
results to neural oscillators that respond to any stimulus 
to with those that only respond to a learnt stimulus. We 
generated every frequency of oscillation between 10 Hz 
and 50 Hz for both types of architecture using QIF neu-
rons.  

In all our experiments we used 64 neural oscillator 
nodes to form a network, with frequencies selected using 
a Gaussian distribution with a mean of 30 HZ and a 
variance of 10 Hz. The phase of each oscillator was de-
termined by the time at which external input to the oscil-
lator was started, which varied from 0 ms to 100 ms. The 
slowest oscillator was 10 Hz and therefore a random start 
point ranging from 0 ms to 100 ms allowed for 10 Hz 
oscillators (as well as all oscillators of higher frequency) 
to be completely out of phase with each other. The neu-
rons in the excitatory layers of each node were synapti-
cally connected to the neurons in the excitatory layers of 
each other node with a connection ratio of 0.2. The ex-
periments involved a sweep of 200 synaptic weights for 
all inter-node connections. Weights were set to the same 
value within each iteration in the parameter sweep, but 
with each different iteration having a different synaptic 
weight. On each sweep the overall synchrony of the 
network was measured. The networks were simulated for 
2000 ms for each iteration of the sweep. Each network 
comprised 16000 neurons and 36,256,000 synapses.  

Figure 5 shows the synchrony results for the evolved 
PING architectures that do not use learning. At 0 con-
nection strength there is a synchrony of around 0.2, 
which indicates no synchrony at all except for coinciden-
tal alignments in phase. Synchrony rises with connection 
strength but so too does the spread of the dots, indicating 
some variation in behaviour with these systems. The 

 
Fig. 5.  Synchrony of QIF models that have not used STDP to train to 
respond to a particular stimulus and therefore responds to any stimuli. 

 

 
Fig. 4.  IZ model after learning with stimulus. Frequency response for 
varying stimulus lengths presented after learning . 

 



synchrony levels off at 0.07 connection strength and 
remains the same until there is a major discontinuity at 
0.17 connection strength. 

By contrast figure 6 show the synchrony for the neural 
oscillators that had learnt to oscillate. Within a critical 
region of connection strengths, synchrony can be seen to 
increase smoothly but rapidly as connection strength 
increases, in accord with Kuramoto’s findings. The con-
nection strength is effective at different levels from the 
non-learning PING model due to different sensitivities in 
the different architectures, Poisson process parameters, 
and scaling factors. However the behaviour is the key 
difference to note. There is a very tight sinusoidal in-
crease, indicating little variation in behaviour with these 
learnt systems, unlike those in figure 5. There are also no 
discontinuities.  

On reaching 100% synchrony both types of architec-
ture exhibited saturation, by which we mean all neurons 
were firing all the time. Figure 7 shows a 200 ms snippet 
of the pairwise synchrony between oscillator nodes at 
their respective maximal synchronies before saturation. 
The non-learning oscillator networks show deviations 
from full synchrony in which the network separates into 
sub-groups, which although they diverge, show similar 
phase movements indicating mutual influence between 
the groups. The learning architectures show little group 
separation behaviour but instead single oscillators seem 
to separate into their own phases away from full syn-
chrony. The same behaviours are manifest at lower 
global synchrony levels albeit that the deviations are 
greater. The behaviour may be intuitively explained by 
the fact that in the non-learning architectures the individ-
ual intrinsic oscillatory frequencies of the nodes as well 
as the interaction between them are generated by the 
network architecture which forms a complete system, 
whereas in the learning architectures the individual in-
trinsic oscillatory frequencies are created by an external 
stimulus that is separate from the network system and as 
such is unable to receive dynamic feedback and therefore 
facilitates more individual rather than group behaviour. 

Discussion 
It has been shown that STDP generates robust syn-

chronous responses. After learning, the networks are 
highly selective for their learnt stimulus, responding at 
the beginning of each repeated stimulus presentation, and 
do not respond to other stimuli. We can conclude that 
repeated post-learning presentation of the stimulus over-
rides or interferes with the oscillatons that would other-
wise be caused by the delays in the PING architecture. A 
fast EI/IE loop will feed back and subside before the next 

learnt stimulus response. In this case oscillations from 
the periodic stimulus will take precedence over PING 
oscillations. Using neurons of either Type I or Type II 
classification produces equivalent results with STDP. 
However, the HH model does not perform in the same 
manner. The difference in the HH model is the An-
dronov-Hopf bifurcation and the neuron’s synaptic re-
versal potential. The result is a less robust network that is 
also unable to use the same architecture to learn to re-
spond to stimuli that have a variety of presentation times. 
Further to this, the critical coupling experiment demon-
strates that the collective behaviour of oscillatory archi-
tectures that have been pre-trained using STDP is well 
defined and precise, in contrast to those that have not 
been trained. However, the internal dynamical behaviour 
differs between the two architectures. 
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Fig. 6.  Synchrony of QIF models that have used STDP to train to 
respond only to a particular. 

 

Fig. 7.  Pairwise synchrony of QIF models at maximal synchrony 
before saturation. 200 ms shown only. 

 


