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Abstract— It has been demonstrated that, in a network of L T e R I
excitatory and inhibitory neurons, a synchronous regponse 5 ‘ i ‘
gradually emerges due to spike timing dependant p&iicity
acting upon an external spatio-temporal stimulus tht is
repeatedly applied. This paper builds on these findigs by
addressing two questions relating to STDP and netwkr
dynamics. Firstly, how does the choice of neuron ndel i
affect the learning of oscillation through STDP? Ourex- o I S FER.
periments suggest that the earlier results hinge othe selec-
tion of a simple, biologically less realistic neuno model.
Secondly, how do neural oscillators that have leasd to
oscillate only in response to a particular stimulusbehave B: Izhikevich neurons
when connected to other such neural oscillators? Weaves- The Izhikevich (1Z) neuron model [5] is a two vaiia
tigate this question by emulating the results of elassic system that can model both Type | and Type Il nesiro
experiment by Kuramoto. depending upon how it is parameterized. The tinwev
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Fig. 1. Raster plot of neuron firings from the itatory layer of a
QIF PING node that has learnt to oscillate at 30 Hz

Introduction tion of the model is defined as follows:
Spike Timing Dependent Plasticity (STDP) is anefi dv

ment of the Hebbian learning principle for spikimgural —=004V? +5v+140-U + |
networks, and has been reported in many experiienta

studies [1]. STDP has further been studied in iaiato dau _ a(bV —U)

oscillations. Hosakeet al [2] demonstrate oscillatory dt

dynamics in a network of excitatory and inhibitargu-
rons that has been trained using STDP with an exter
spatio-temporal stimulus that was repeatedly agplie | is the input to the neuron. V and U are the \gsta
They found that a synchronous response graduallyand recovery variable respectively, and a, b, c ciade
emerges, and the synchrony becomes sharp as lgarnirdimensionless parameters. The chosen parametegsvalu
proceeds. The authors state that the generati®yrof  dictate that the Izhikevich neurons used in thisepaare
chrony itself does not depend on the length ofcyjnde Type Il neurons with a saddle node bifurcation.

of external input, however they found that synclyron (. Hodgkin-Huxley neurons

emerges once per cycle of the length of the externa  The Hodgkin-Huxley (HH) model [6] is a Type Il neu-
stimulus trained upon. ron with an Andronov-Hopf bifurcation. Hodgkin and
This paper addresses two issues relating to STAP anHuxley found three different types of ion curresadium
network dynamics. Firstly, how does the choice @in  (Na+), potassium (K+), and a leak current that i=iss
ron model affect the learning of oscillation thrbug mainly of chloride (CI-) ions. From their experinten
STDP? Secondly, how do neural oscillators that haveHodgkin and Huxley formulated the following equatio
learned to only oscillate in response to a pawicatimu-  defining the time evolution of the model:
lus behave when connected to other neural osaitiato dv

Methods Ca: gKn4(V - EK)_ gNam3h(V - ENa)_ gL(U - EL)

if V>30,then{y —c , U -U +d

A: Quadratic intergrate-and-fire neurons C is the capacitance amj m andh describe the vol-
The Quadratic Integrate and Fire (QIF) model [3-di tage dependence opening and closing dynamics of the

plays Type I neuron dynamics [4] with a saddle nodejon channels. The standard parameterisation arel rat

bifurcation. The time evolution of the neuron meat®  functions for each chemical and channel are usddan

potential is given by: be found in Hodgkin and Huxley’s book [6].
av _ 14 - _ 1N D: Synaptic model
dt V=V v A conductance synaptic model is used for experi-

ments using the QIF and IZ models model, whereas th
HH model uses synaptic reversal potentials to @rth
scale incoming spikes. The latter model is as ¥adlo

where V is the membrane potential, withand \f be-
ing the resting and threshold values respectivelis the
capacitance of the cell membraneis the membrane
time constant such that= RC with R being the resis- I, ®)=>, wt, (Rev -Vv,)
tance. | represents a depolarizing input currenthi®
neuron.



Frequency Amplitude Response To Leanrt Stimulus With Noise
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Fig. 2. Amplitude of desired 30 Hz frequency resgmfor QIF,
1Z and HH models with 0%-100% noise added to stiraul

where |(t) is the input to neuron j at tintet; is the
spike from neuron i arriving at timg and w; is the
weight of the synapse connecting the two neuroas.if
the reversal potential and; 6 the voltage of the target
neuron.

E: Spike timing dependent plasticity

Frequency Response Given Length Of Stimulus
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Fig. 3. Frequency response for QIF, 1Z and HH n®ddter
learning with varying stimulus lengths.

G: Synchronisation metric

The Kuramoto inspired critical coupling experirhen
simulations in this work consisted of 64 neural 8IN
oscillators connected together. We only calculatgad-
chrony amongst the excitatory neuron layers. Tlieesp
of each neuron in each excitatory layer were birmest

The STDP update method used in this paper is artime, and then a Gaussian smoothing filter was guhss

‘additive nearest neighbour' scheme. A pre-synapile
followed by a post-synaptic spike potentiates tyeap-
tic weight, where as a post-synaptic spike follovieyda

over the binned data to produce a continuous tierg-v
ing signal. Following this, we performed a Hilb&dns-
form on the mean-centred filtered signal in oraeiden-

pre-synaptic spike depresses the weight. The change tify its phase. The synchrony at timevas then calcu-
weight (Aw) is affected by the exponential of the time lated as follows:

difference (t) and the learning rate constah: (
-lat|
Aw=Jde ™

For potentiation, the learning rate valuds 0.3, and

the windowr is 20 ms. For depression, the learning rate

valuel is 0.3105 and the windowis 10 ms.

F: Evolution of oscillatory nodes

The neural architecture for generating oscillations
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whered(t) is the phase at timieof oscillatory population
j. 1is the square root of -N is the number of oscilla-
tors, and.is the length of time of the simulation.

used in this paper is pyramidal inter-neuronal gamm Results

(PING), and can give rise to both faster gammallasci
tions, as well as slower oscillations such as tlvetdne
cortex and the hippocampus [7].

Whilst the general PING architecture is well under-

stood, the specific details required for both pattr

oscillatory frequencies and neuron model varies and
involves a large space of parameter values withm t

general PING framework. In order to obtain thesees

we used a genetic algorithm. In the present wolk, a

neural populations used an excitatory layer of 860-
rons and an inhibitory layer of 50 neurons. Theitaxc
tory layer drives the entire network and so isdghly one
to receive external input. The networks were witgxd

with connections between excitatory neurons, betwee

inhibitory neurons, from excitatory to inhibitorguarons,
and from inhibitory to excitatory neurons.

The parameters that were evolved were the length
milliseconds of the external stimulus presentatitirg
synaptic weights and delays, as well as the nurober

synaptic connections between source and targebnsur

in each pathway. The amount of time trained for alae
an evolved parameter for networks that learnt. Types

of PING architecture networks were investigatede Th

first learnt a stimulus and then after learning ldoanly
oscillate to the learnt stimulus. The second ditl use
learning and so would oscillate to any input stimul

A: Neuron model and the learning of oscillation

Ouir first investigation explored how the neuron elod
affects the ability of a cluster of neurons to ketir oscil-
late. In order to explore this we evolved neuraliéng
PING oscillators to oscillate at 30 Hz for QIF, &ad
HH neuron models. Figure 1 shows a raster plohef t
firings of the excitatory layer from the evolvedR3olu-
tion when it has been presented with a learnt s$tisu
after training. In accord with the finding of Hosedt al
[2], the network fires regularly at the stimulusgenta-
tion, and has narrow and pronounced periodic bands.
These thin bands appear approximately every 33-mill
seconds giving the 30 Hz oscillation desired.

Figure 2 shows how the networks respond to between
0% to 100% noise in the stimulus averaged oveub8.r

. The aim of this study is to ascertain if the netwonly
r‘Pesponds by oscillating to the learnt stimulus amod

other. The QIF network performs the best, showing a
gradual decline in the amplitude of the frequeney r
sponse until it reaches a minimal response at 40i%en
Less than 0.5 amplitude implies that only a fewrnas

are firing hence no response is really being preduc
hence it is highly selective to only its learntnstius.
The 1Z model performs almost as well. The HH model
performs poorest with a less pronounced frequemcy a
plitude decline as noise rises, and also a leddesta-



Altering Stimulus Length After Training For 1Z Model
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Fig. 4. 1Z model after learning with stimulus. §oency response for
varying stimulus lengths presented after learning .

sponse throughout. The less stable response isodae
high variance in the amplitude over the 10 samplesr
and is indicative of the fact that the networkrikérently
more volatile.

Figure 3 shows the effect of changing the length in
milliseconds of the stimulus trained upon (averageer
10 runs). All learning stages for all stimulus lérgg had
the same learning time. We located the frequendi wi
the highest amplitude only. From the figure we cap
that none of the models respond significantly imsli
less than 10 ms long. Beyond this, the figure shihas
for both QIF and 1Z models, the length of the stimsuis
roughly proportional to the frequenct),(with f=1000%.
This cannot be said of the HH model, which is ueabl
use the same network architecture to learn tolaseiat
different frequencies, given only a change in timdus
length. Having found a dependency on stimulus lgngt
we removed the inhibitory layer from the networksla
found it made no difference to the performance &#,Q
IZ and HH models. We conclude that, regular rejoetit
of a stimulus to a network that has been trainadgus
STDP will cause oscillation at the frequency ofgeneta-
tion. For the HH model this further means that wthil
stimulus length is important in achieving the rgsthe
tuning of other variables is necessary to achibeede-
sired oscillation.

The fact that oscillatory frequency is dependerdrup
the length of the presentation can be elucidatedhby
work of Masquelieret al [8]. They report that, Each
time the neuron discharges in the pattern, it [STDP
reinforces the connections with the presynapticromesi
that fired slightly before in the pattern. As aubsext
time the pattern is presented the neuron is noy andre
likely to discharge to it, but it will also tend tlischarge
earlier’ [8]. The fact that neurons learn to always re-
spond to a particular stimulus implies that theuteg
repetition of a stimulus to a recurrent network igou
cause the network to fire regularly at the stimydtessen-
tation, and that this firing would become earliexda
sharper, in the sense of producing narrower ande mor
pronounced periodic bands, as learning proceedwxée
the resulting synchrony.

It follows from this that after an appropriate pefriof
learning the frequency of the oscillation can bpisteéd
by simply altering the length of the stimulus, tis ionly
the beginning of the stimulus that is required riduice
firing. To test this hypothesis we generated a stiis) of
100 ms, trained the network on it repeatedly unshtis-
factory amplitude response was attained. We thstede
the network only using the firstmilliseconds repeatedly.

Synchrony Of Non-Learnt QIF PING Networks
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Fig. 5. Synchrony of QIF models that have not USEBP to train to
respond to a particular stimulus and thereforeaedp to any stimuli.
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We did this for every value dfbetween 13 and 100 ms.
As can be seen by the results for the 1Z model shiow
figure 4, the hypothesis is correct. Hosakal [2] state
that in a network of excitatory and inhibitory nens,
STDP transforms a spatiotemporal pattern to tentpora
information. However, from the evidence above we-co
clude that the resultant temporality is not du¢ht® net-
work dynamics that result from the PING architeetur
but is an artifact of repeatqukriodic presentatiorof a
learnt stimulus. The network will respond “synchro-
nously” whenever the stimulus is presented.

B: Critical coupling experiment

Our next investigation explored the critical coagli
experiment [9] in which synchrony increases smaothl
but rapidly as connection strength increases imitom
mally connected network of oscillators. We compiie
results to neural oscillators that respond to amywus
to with those that only respond to a learnt stimulve
generated every frequency of oscillation betweerHz0
and 50 Hz for both types of architecture using @é&u-
rons.

In all our experiments we used 64 neural oscillator
nodes to form a network, with frequencies selecisdg
a Gaussian distribution with a mean of 30 HZ and a
variance of 10 Hz. The phase of each oscillator des
termined by the time at which external input to tiseil-
lator was started, which varied from 0 ms to 100 T
slowest oscillator was 10 Hz and therefore a ranstamt
point ranging from 0 ms to 100 ms allowed for 10 Hz
oscillators (as well as all oscillators of highezdfuency)
to be completely out of phase with each other. ide-
rons in the excitatory layers of each node werepgiin
cally connected to the neurons in the excitatoygra of
each other node with a connection ratio of 0.2. €ke
periments involved a sweep of 200 synaptic weidts
all inter-node connections. Weights were set tostmme
value within each iteration in the parameter swdm,
with each different iteration having a differenthaptic
weight. On each sweep the overall synchrony of the
network was measured. The networks were simulated f
2000 ms for each iteration of the sweep. Each mitwo
comprised 16000 neurons and 36,256,000 synapses.

Figure 5 shows the synchrony results for the ewblve
PING architectures thato not use learning At O con-
nection strength there is a synchrony of around 0.2
which indicates no synchrony at all except for ci@en-
tal alignments in phase. Synchrony rises with cotioe
strength but so too does the spread of the dat&ating
some variation in behaviour with these systems. The
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respond only to a particular.

synchrony levels off at 0.07 connection strengtll an
remains the same until there is a major discortiinai
0.17 connection strength.

By contrast figure 6 show the synchrony for theraku
oscillatorsthat had learnt to oscillate Within a critical
region of connection strengths, synchrony can ke se
increase smoothly but rapidly as connection stitengt
increases, in accord with Kuramoto’s findings. Toa-
nection strength is effective at different levelani the
non-learning PING model due to different sensiiigtin
the different architectures, Poisson process pamgse
and scaling factors. However the behaviour is thg k
difference to note. There is a very tight sinusbida
crease, indicating little variation in behaviourttwthese
learnt systems, unlike those in figure 5. Thereadse no
discontinuities.

On reaching 100% synchrony both types of architec-
ture exhibited saturation, by which we mean allrnes
were firing all the time. Figure 7 shows a 200 mipget
of the pairwise synchrony between oscillator nodes
their respective maximal synchronies before saturat
The non-learning oscillator networks show deviation
from full synchrony in which the network separaiet®
sub-groups, which although they diverge, show simil
phase movements indicating mutual influence betwee
the groups. The learning architectures show lgtieup
separation behaviour but instead single oscillasgem
to separate into their own phases away from full-sy

chrony. The same behaviours are manifest at Iower[4]

global synchrony levels albeit that the deviaticare
greater. The behaviour may be intuitively explairtsd
the fact that in the non-learning architecturesitiokvid-

ual intrinsic oscillatory frequencies of the nodeswell

as the interaction between them are generated dy th
network architecture which forms a complete system,
whereas in the learning architectures the individoa
trinsic oscillatory frequencies are created by =ermal
stimulus that is separate from the network systathas
such is unable to receive dynamic feedback ane:fiver
facilitates more individual rather than group bebax.

Discussion

It has been shown that STDP generates robust syn[—

chronous responses. After learning, the networles ar
highly selective for their learnt stimulus, respumgdat
the beginning of each repeated stimulus presentadiod

do not respond to other stimuli. We can conclud® th
repeated post-learning presentation of the stimolgs-
rides or interferes with the oscillatons that woaltier-
wise be caused by the delays in the PING architect
fast EI/IE loop will feed back and subside befdre hext

T3]
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Fig. 7. Pairwise synchrony of QIF models at maxisymchrony
before saturation. 200 ms shown only.

learnt stimulus response. In this case oscillatifsom

the periodic stimulus will take precedence over GIN

oscillations. Using neurons of either Type | or &y
classification produces equivalent results with £TD
However, the HH model does not perform in the same
manner. The difference in the HH model is the An-
dronov-Hopf bifurcation and the neuron’s synapte r

versal potential. The result is a less robust ngthat is

also unable to use the same architecture to leamne-t
spond to stimuli that have a variety of presentatimes.
Further to this, the critical coupling experimermntbn-
strates that the collective behaviour of oscillgatarchi-

tectures that have been pre-trained using STDPeilk w

defined and precise, in contrast to those that hete
been trained. However, the internal dynamical bituav
differs between the two architectures.
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